Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1225720220140040393
Allergy, Asthma & Immunology Research : AAIR
2022 Volume.14 No. 4 p.393 ~ p.411
Sputum Metabolomic Profiling Reveals Metabolic Pathways and Signatures Associated With Inflammatory Phenotypes in Patients With Asthma
Liu Ying

Zhang Xin
Zhang Li
Oliver Brian G.
Wang Hong Guang
Liu Zhi Peng
Chen Zhi Hong
Wood Lisa
Li Wei Min
Wang Gang
Abstract
Purpose: The molecular links between metabolism and inflammation that drive different inflammatory phenotypes in asthma are poorly understood. We aimed to identify the metabolic signatures and underlying molecular pathways of different inflammatory asthma phenotypes.

Methods: In the discovery set (n = 119), untargeted ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was applied to characterize the induced sputum metabolic profiles of asthmatic patients with different inflammatory phenotypes using orthogonal partial least-squares discriminant analysis (OPLS-DA), and pathway topology enrichment analysis. In the validation set (n = 114), differential metabolites were selected to perform targeted quantification. Correlations between targeted metabolites and clinical indices in asthmatic patients were analyzed. Logistic and negative binomial regression models were established to assess the association between metabolites and severe asthma exacerbations.

Results: Seventy-seven differential metabolites were identified in the discovery set. Pathway topology analysis uncovered that histidine metabolism, glycerophospholipid metabolism, nicotinate and nicotinamide metabolism, linoleic acid metabolism as well as phenylalanine, tyrosine and tryptophan biosynthesis were involved in the pathogenesis of different asthma phenotypes. In the validation set, 24 targeted quantification metabolites were significantly expressed between asthma inflammatory phenotypes. Finally, adenosine 5¡Ç-monophosphate (adjusted relative risk [adj RR] = 1.000; 95% confidence interval [CI] = 1.000?1.000; P = 0.050), allantoin (adj RR = 1.000; 95% CI = 1.000?1.000; P = 0.043) and nicotinamide (adj RR = 1.001; 95% CI = 1.000?1.002; P = 0.021) were demonstrated to predict severe asthma exacerbation rates.

Conclusions: Different inflammatory asthma phenotypes have specific metabolic profiles in induced sputum. The potential metabolic signatures may identify therapeutic targets in different inflammatory asthma phenotypes.
KEYWORD
Asthma, sputum, metabolomics, phenotype, biomarkers
FullTexts / Linksout information
 
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø